If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.6t^2-12t+30=0
a = 0.6; b = -12; c = +30;
Δ = b2-4ac
Δ = -122-4·0.6·30
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{2}}{2*0.6}=\frac{12-6\sqrt{2}}{1.2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{2}}{2*0.6}=\frac{12+6\sqrt{2}}{1.2} $
| 8x²-35=18x | | 2(6x-13)=12 | | 10-3(4x-5)=-11 | | 8b-3=-51 | | 5(2x-3)+7=12-5(×+1) | | 9(3x-6)=14 | | 65=3k+-8 | | 9w-3=60 | | 4(5y-13)=15 | | |4r+6=6 | | 2x3^x-4=54 | | Y=-4.9x^2+75 | | W=12.5(c)+39.2 | | ×+4y=60 | | |4r-8|=20 | | 21=5(u-3)+4u | | xx2-10=26 | | xx2-10=2 | | (0.01+x)(x)/(0.01-x)=0.012 | | 2*49^x+5=-11*7^x | | 22x+54x=-24+60x | | 2.7+x=16.2 | | -6.2+x=10 | | 5^x=4/512 | | 3x(2+x)=x(2x-2)-24 | | 3x-3=1x+(-7) | | 15x=1,000 | | 3.4+x=(-7.8) | | (a-2)^2=5(a+2) | | 5(2x-1)(3x+2)=0 | | 4y=16=-12 | | 4y=8(2)=-12 |